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Heat transfer in a radial liquid jet 
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Department of Mathematics, Durham University 
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The heat transfer in a radial liquid jet is investigated. I n  the region where a 
similarity solution of the momentum equation is available solutions of the energy 
equation describing the effects of viscous dissipation, initial heating and wall 
heating are obtained in closed form. Two examples illustrating the work are 
discussed. In  the second of these an approximate method, based on the heat 
flux equation, is used to describe the initial development of the thermal boundary 
layer. 

1. Introduction 
A radial liquid jet is formed when a smooth jet of liquid falls vertically on to 

a horizontal plane and spreads out radially over it as, for example, water falling 
from a tap to the bottom of an empty sink. The liquid spreads out in a thin layer 
until the depth increases suddenly forming a hydraulic jump. I n  order to discuss 
the motion of the fluid in the thin layer before the hydraulic jump, the assump- 
tions of boundary-layer theory are applied which require that the Reynolds 
number of the impinging jet should be large. A n  important contribution to the 
theory of radial liquid jets has been made by Watson (1964). He found a simi- 
larity solution of the boundary-layer equations governing such flow and also 
considered by approximate methods the initial growth of the boundary layer 
from the stagnation point where the similarity solution does not hold. Later it 
was investigated by Riley (1962a) in his study of radial jets with swirl. 

In  studying the velocity distribution Watson found it convenient to divide the 
flow into four different regions which pass continuously into one another. 

(i) The region near the central stagnation point where the radial distance 
r = O(a,), a, being the radius of the impinging jet. Here the boundary-layer 
thickness is O(va,/U,)~ where U, is the speed of the impinging jet and v the 
kinematic viscosity. 

(ii) When r % a, conditions in region (if are unimportant and the boundary 
layer grows like the Blasius boundary layer on a flat plate. 

(iii) As r increases the viscous stresses affect more and more fluid across the 
jet and the boundary layer increases in thickness until it absorbs the whole layer 
of fluid. The velocity profile then gradually changes from Blasius-type to the 
similarity profile mentioned earlier. 

(iv) At large distances from the stagnation point the way in which the flow 
originated becomes unimportant and the final similarity form is attained. 

The hydraulic jump associated with this type of flow will ultimately terminate 
the region of flow under consideration. 
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The problem of the distribution of temperature in a radial liquid jet is studied 
here by conforming to a similar division of the flow. Section 2 contains the appro- 
priate equations of motion and the similarity solution of the momentum equation 
first found by Watson is briefly discussed. In  0 3 similarity solutions of the energy 
equation appropriate to region (iv) are obtained for a wide variety of temperature 
conditions. 

In  the first of the two examples described in $ 4, part of the wall is assumed to 
be thermally insulated, the rest being maintained at a constant temperature 
different from that of the initial jet. A solution of the energy equation is found 
for this latter part which is chosen to correspond to region (iv) described above. 
I n  the second example the whole wall is maintained a t  a constant temperature so 
that both the temperature and velocity distributions have to be studied in all the 
four regions described earlier. Regions (i) and (iii) are neglected following 
Watson (1964) and Riley (19626). In  region (ii) an approximate method using 
integrated forms of the boundary-layer equations and polynomials of the fourth 
degree for the temperature and velocity functions is employed. The neglect of 
regions (i) and (iii) and Watson’s approximate method in region (ii) are discussed 
at the end of $2.  For this second example, which may have important practical 
applications, expressions are given for the Nusselt number in regions (ii) and (iv) 
for several values of the Prandtl number. Illustrations showing the effectiveness 
of radial liquid jets for cooling purposes are also included. 

In  the examples discussed above we assume that the contribution to the 
temperature of the liquid in the jet due to viscous heating is negligible compared 
to the applied heating. Throughout this work the boundary-layer equations are 
assumed to be appropriate, temperature differences are taken to be small, and 
p, the viscosity and p, the density are assumed to be constant. 

2. Equations of motion 
Using boundary-layer approximations the momentum, continuity and energy 

equations governing the incompressible laminar flow of a liquid jet striking a 
plane horizontal wall at right angles and spreading out radially over it are 
respectively u(au/ar) + w(au/az) = v(aZu/az2), (2.1) 

a(ru)/ar + a(rw)/az = 0, (2.2) 

and u(aT/ar) + w(~T/~z) = ( ~ / g )  azT/az2+ (~1s) (au/az)z. (2.3) 

Here r,  x are distances measured along the wall from the jet axis and normal to it 
respectively; u, w are the corresponding velocity components and v, T, CT, S 
denote respectively the kinematic viscosity, temperature, Prandtl number and 
specific heat of the liquid in the jet. The boundary conditions are 

and 

u = w = O  at z = O ,  

au/az = 0 at z = #(r),  

aT/& = 0 at x = +(r).  

Other boundary conditions on T necessary to specify the problem completely 
will be introduced later. Conditions (2.5) and (2.6) express the fact that the 
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shearing stress and heat transfer are zero at the free surface z = (P(r). With the 
boundary conditions (2.4) and (2.5) Watson (1964) has shown that a similarity 
solution of the momentum equation is available. This may be written as 

9 = (34(3) Q/r)f (71, 7 = (3 J(3)  Qr/7rv(r3 + I”,> 2, (2.7) 

ur = a$/az, wr = -a$/&, (2.8) 

where 9 is the stream function defined as 

and I is an arbitrary constant length which depends on the initial development 
of the boundary layer. Watson estimates I = 0-567a0R), where R is the jet 
Reynolds number 27rQ/va0. The constant Q is given by the condition of constant 
volume flux per radian, namely 

wrdz  = Q. (2.9) Sn”‘” 
The function f satisfies the ordinary differential equation 

with I f”’ + 3f’Z = 0, 

f(0) = f‘(0) = f”(1) = 0, 
(2.10) 

the free surface having been chosen to be 7 = 1. It is convenient, for what follows, 
to make the transformation 

(2.11) f = 9 ~ 4 f l t  
where the constant a1 is chosen so that 

f;(l) = 1. 

Thus the equation satisfied by fl is 
(2.12) 

f’:++a4 fl= 0, (2.13) 

with the same boundary conditions as for f in (2.10). Integrating equation (2.13) 

(2.14) 
once f’; = a,( 1 - f 4 3 ) 4  

and so alq = 1; (1 -s3)-*ds, 

which with (2.12) gives 
a1 = lo1 (1 - s3)-i ds = 1.402. 

Also, from (2.14) 

(2.15) 

(2.16) 

(2.17) 

The velocity function f ‘  is displayed graphically in figure 1. 
If r 9 a,, conditions prevailing in region (i) where r = O(ao) are not important 

and in the approximate analysis discussed below, and in $4,  region (i) is ignored. 
For his approximate solution, in region (ii), Watson used the Kbrmbn- 
Pohlhausen method with 

u = GJf;(7), 7 = z / w ,  (2.18) 

where fi(7) is the similarity profile defined by (2.15) and 6(r) is the boundary- 
layer thickness. This technique has the effect of suppressing region (iii) in which 
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the velocity profile changes to its final similarity form. In  fact, Riley (1962b)  
has shown that in region (iii), when the boundary layer fills the whole of the 
moving layer of fluid, any disturbance to  the similarity velocity profile is O(r-45). 

Thus the final similarity form is attained very rapidly. Substitution of the 
approximate velocity profile (2.18) in the momentum integral equation for 
radial flow 

gives, on integration 
4 ( 3 ) a :  vr3 

r26 = - +c, 
(i. - 4 ( 3 )  uo 

(3.19) 

(2.20) 

7 
FIGURE 1. The velocity functionf’(7) from (2.10). 

where C is a constant. A consideration of the order of magnitude shows that 
C = O(u$/r3) relative to the other terms there and hence can be neglected when 
r > uo. Thus when ro > r > uo 

(2.21) 
J ( 3 ) a :  vrai 62 = 

(n - 4 3 )  4 2& ’ 
where ro is the station at which the boundary layer just absorbs the whole flow. 
Watson calculated the value of ro from the condition that the volume flux 
through the boundary layer reaches the value Q there, and thus obtained on the 
basis of the above approximate solution 

ro = 0.3155u0R~. (2.22) 

3. Similarity solutions of the energy equation 

energy equation (2 .3)  may be written, with (r,  7) as independent variables, as 
In  region (iv) where the solution of (2.1) and (2 .2)  is given by (2 .7)  and (2 .8 ) ,  the 

(3.1) 
a2T o(r3+/3) aT 272Q40 

f5 = - n4v2,CJ(r3 + 4 2  fnZ7 ~- 
ar2 

with the boundary condition 
aqar = o at 71 = 1. 
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At the wall either the wall temperature T, or heat transfer, proportional to 
(aT/ay),=,, may be prescribed. .In the examples discussed in 3 4 we shall restrict 
ourselves to the case of constant wall temperature or, if the wall is thermally 
insulated, zero heat transfer. 

A particular integral of (3.1) can be found in the form 

T = To + C0(r3 + 13)-V0(7), (3.3) 

where To and Co are constants. Equation (3.1) also has complementary functions 
of the form 

(3.4) T = C, + C2(r3 + Z3)-"en(7), 

with On satisfying e; + 3aCye, = 0. (3.5) 

A complete picture of the temperature distribution prevailing in a particular 
problem can thus be obtained by adding to the particular integral (3.3) appro- 
priate complementary functions of the type (3.4). 

The effects of viscous heating, wall heating and initial heating will now be 
studied separately. 

(u) Viscous heating 

To study the effects of viscous dissipation on the temperature distribution in the 
jet we require a particular integral of (3.1) in the form (3.3) where, with 
Co = -272Q4/n4v2X, Bo(q) satisfies 

e; + ~o-~v ,  = u p ,  
with boundary conditions 

(3.7) 

(3.8) 

either 
or Oh(0) = 0 for a thermally insulated wall, 
and eh(1) = 0 from (3.2). 

It is convenient to change the independent variable in (3.6) and (3.7) from 
q to a new variable t with 

Thus, from (2.11), (3.6) and (3.8) we have, as the equation for So 

Bo(0) = 0 if the wall is maintained at constant temperature, 

t = f i3 .  

t ( i  - t )d2eo/dt2+(~-~t)deo/dt+gCeo = *ggO1;t-&(i - t ) .  (3.9) 

The boundary conditions (3.7) now become 

(3.10) 

A solution of equation (3.9) may be obtained in terms of a generalized hyper- 
geometric function. Thus in the usual notation, 

1 8,(0) = 0, or [t%de,/dt],=, = 0, 

and [(i - t p  ae,/dt],=, = 0. 

(3.11) 

where 12a = [21+(1+48~)* ] ,  12b = [21- (1+48~)) ] ,  G = 1, d = 8 and e = #. 
From this particular integral and the complementary functions of (3.9) (O,,, O,, 
of fj 3 (c) below in which we set 01 = 2) solutions may be constructed which satisfy 
either of the conditions (3.10) at t = 0, together with that at t = 1. For cr = 1 
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the solution (3.11) gives 0, = 4 f ', as indicated by the quadratic term in the well- 

where A and B are constants. 
We expect the effects of viscous dissipation in a liquid jet to be small and 

indeed, in what follows, we shall assume that it can be neglected compared with 
the applied heating. 

( b )  Wall heating 
When the wall is maintained at a constant temperature T,, we need a comple- 
mentary function of the form (3.4) with a = 0. Thus 

known Crocco relation T+u2/25 = A+Bu,  (3.12) 

T = Tl + (Tz - Tl) 01(7), 
where TI is the temperature of the incident jet. From (3.5) 01(7) now satisfies 
sl; = 0,  which, with the boundary conditions 0,(0) = 1, 0;(1) = 0 has the trivial 
solution 0, = 1. This solution reflects the physical situation that ultimately all 
the fluid is raised to temperature T,. The manner in which the fluid attains this 
constant temperature depends upon the initial heating of the fluid, the effects of 
which we now consider. 

( c )  InitiaE heating 
We now require further complementary functions of the type (3.4). Thus when 
viscous dissipation effects are negligible we may write the temperature as 

T = T2 + CZ(r3 + Z3)--a82(7), 

where O,(T) satisfies the differential equation (3.5). 
We may note that if the liquid from which the jet is formed is, as we shall 

assume, at a uniform temperature Tl and the wall over which the fluid flows is 
thermally insulated then the fluid remains at constant temperature as no heat is 
transferred to or from the fluid across either the wall or free surface. 

When the wall is maintained at constant temperature T, the appropriate 
boundary conditions for 8, are the first and third of those in (3.7). The trans- 
formation from 7 to the new variable t defined in (3.8) reduces (3.5) to the 
hypergeometric equation 

t ( i  - t )  m , p t 2  + (g - ;t) ae,pt + Q ~ ~ O ,  = 0, (3.13) 

the boundary conditions now being the first and third of those in (3.10). The 
determination of a in equation (3.13) is an eigenvalue problem. In view of the 
form of the boundary condition at t = 1 i t  is convenient to choose the following 
as the solutions of (3.13) 

021 = 4 ;  4; 1 - t ) ,  
and 0,, = ( l - t ) ~ P ( ~ - p , ~ - q ; $ ; l - t ) ,  

where p and q are given from 
p-l-q = Q, pq = -&m-. (3.14) 

The boundary condition at the free surface determines 0,, as the required solu- 
tion and that at the wall requires that 

[8,,1',0 = ( - ~ ) ! ( - ~ ) ! / ( - p - ~ ) ! ( - q - ~ ) !  = 0; 
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with (3.15) this gives p ,  q and a as 

pa= (h+Q) ,  q = -(h+&), 

a = ( 1 + 2 h ) ( l + 3 h ) / a  where h = 0,1,2 ,.... 

Therefore, using a standard transformation of the hypergeometric function, we 

8, = A , & F ( - h , h + $ ; $ ; 1 - t ) ,  (3.15) have 

where A ,  are constants. Thus, writing h(r) = (r3 + Z3)/(r? + 13) and including other 
constants in A,  we have 

00 

T = T tt A h h-(1+2h)(1+3hlb$’( -h,$+h; 4; 1 - t ) .  (3.16) 2 +  

For a = 1 the leading term in (3.16) is given by the linear term in u in the Crocco 
relation (3.12).  The hypergeometric function in (3.16) is a polynomial and is 
related to the Jacobi polynomials * ” ( f )  by 

PgJ)(g) = [(i +h)!/i! h !]F(  -h, h+ i + j + 1; i + 1 ;  + - J&). 

The Jacobi polynomials are orthogonal in - 1 < f < 1 with the weight factor 
( I  - g)+ (1 + 6)f. Therefore, if the temperature distribution is known at any 
station r = rl the constants A,  can be calculated from 

h=O 

Ah - ( 2 h + $ ) ( h - + ) ! ( h - 9 ) !  

(Tl--TZ) - Th! (h + +)! 
(3.17) 

The heat transfer across the wall, per unit area, is given by 

where k is the thermal conductivity. 

4. Examples 
As a first example we consider the case where part of the wall, r < rl, is assumed 

to be thermally insulated and the rest maintained a t  a constant temperature T2. 
The end-point, r = rl, of the thermally insulated part is assumed to be in region 
(iv) as described in the introduction. Therefore, in the regions (i), (ii) and (iii) and 
in particular at r = rl the temperature is uniform everywhere and equal to Tl. 
Thus the constants A,  occurring in (3.16) may be determined from (3.17), with 
[(T-G)/(G-%)Ip=rl = 1 ,  as 

Ah - ( - l ) h . J ( 3 ) ( - & ) ! ( h - 4 ) ! ( 2 h + $ )  

(T1-Tz) - 2n%! (h + *) (h  + 3)  
The fist six values of A ,  are given in table 1 where a value cr = 5 appropriate to 
water, has been chosen for the Prandtl number. The local rate of heat transfer 
across the wall for r > r1 is displayedgraphically in figure 2 where, for convenience, 
we have taken rl = ro. 
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As a second example we consider the case when the wall is maintained at 
a constant temperature throughout; thus the temperature distribution in the 
liquid passes smoothly through the stages (i)-(iii) before attaining the similarity 
form in region (iv). We have already explained, in § 2, why regions (i) and (iii) 
may be ignored and we have also discussed there the method employed by 

h 0 1 2 3 4 5 
AjJ(T1- T,) + 1.187 - 0.280 + 0.150 - 0.100 + 0.074 - 0.059 

TABLE 1. VaIues of the constants A,  calculated from (4.1) 

- 

Watson for an approximate solution in region (ii). To determine the temperature 
distribution in region (ii) we use an approximate method in which both the 
momentum integral equation and the heat flux equation-an integrated form of 
the energy equation-are used. To simplify the calculation polynomials of the 
fourth degree are assumed for the velocity and temperature functions. The heat 
flux equation, obtained by integrating the energy equation across the boundary 
layer and neglecting frictional heat, is 

The velocity and temperature distributions are assumed to have the forms 

u = u0(27 - 273 + 74), 

T - T' = (Tz - TI) (1 - 271. + 27% - y",, 
(4.3) 

(4.4) 

where 7 = z/S and qT = z/S,, S(r) and S,(r) being the velocity and thermal 
boundary-layer thicknesses respectively. The ratio S,/S will be denoted by A. 
The form of the temperature distribution assumed in (4.4) ensures identical 
velocity and temperature profiles required for the case c = A = 1 in the absence 
of frictional heating. Inserting (4.3) and (4.4) in (4.2) we obtain 

UoAzH(A) d(rS)2/dr = 4vr2/c, (4.5) 

where, for A < 1 (which will be the case when the jet is formed from water) 

H(A) = -&A-&A3+&A4. 

With 6 known (4.5) is an equation for A. To determine Sin this case we substitute 
(4.3) into the momentum integral equation (2.19) to get 

where, as before, the constant of integration may be set equal to zero. Equation 
(4.6) is analogous to the result (2.21) obtained by Watson. Equation (4.5) with 

62 = %tvr/Uo, (4.6) 

(4.6) now gives 
(4.7) 

For the reasons given at the end of 9 2 region (iii) can be ignored. The approxi- 
mate solution of the energy equation for region (ii) may be matched with the 
solution (3.16) at the station r = ro where the flow attains its similarity form. 
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Thus, in this case, rl = r0 and the quantity ro is determined by the condition that 
the volume flux through the boundary layer attains the value Q there. Thus 
(2.9) with (4.3) and (4.6) gives 

To estimate 1 we apply the condition that the jet thickness is continuous at  
ro = 0 . 2 4 3 ~ ~  R). (4.8) 

r = T o .  Thus 
(4.9) 

which, with (4.8) and remembering that Uoat = 2Q, gives 

which may be compared with Watson's value 0 . 5 6 7 ~ ~  R*. 
1 = 0.558a0R*, (4.10) 

h 0 1 2 3 4 

A*I(T1- T,) + 1.165 - 0.220 + 0.072 - 0.021 + 0.001 

TABLE 2 .  Values of the constants A,  obtained numerically from (3.17) 

I 

4 I\ 

I 

r/(ao R 4  
FIGURE 2.  The heat transfer across the wall. 

Example 1, - - - - -; example 2, -. 

The constants A ,  in this case are given by (3.17) where [(T - T'.)/(T, - T,)],.=, 
is evaluated from (4.4). The values of A,, found by numerical integration with 
CT = 5,  A = 0.570, are shown in table 2. 

The local rate of heat transfer across the wall in this case is also displayed 
graphically in figure 2 where it is compared with the previous example. For 
r < ro it  is calculated from the approximate solution described above and for 
r > ro from equation (3.18). 

Since the cooling of hot surfaces by thin liquid layers, of the type envisaged 
in this paper, may have important practical applications we include for this 
second example expressions for the Nusselt number in regions (ii) and (iv) for 
several values of the Prandtl number CT. The Nusselt number Nu is defined as 

Nu = &/ka0(T, - T'), (4.11) 
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where Gw is the heat transfer across a disk of radius r centre the jet axis, thus 

Q, = 1 ' ZnrQ, dr . 
0 

(4.12) 

Then, for r/u,R* < 0-243, from (4.4), (4.6), (4.7) and (4.11) we have 

Nu/R = - A*(r3/ag R)*, (4.13) 

whilst for r/a,R* > 0.243 from (3.17), (3.18), (4.11) and (4.13) we have the 
Nusselt number, based on the first five terms of the relevant series, given as 

Nu 4 
- = DhAYh-D. 

h=O 
(4.14) 

U A* 

1 1-404 
2 1.800 
3 2.080 
4 2.282 
5 2.463 
6 2.624 
7 2.752 
8 2.894 
9 3.019 

10 3.119 

DQ 
0.850 
1.753 
2.673 
3.587 
4.502 
5.418 
6.330 
7.243 
8.155 
9.065 

Dl D, 
0.019 o*ooo, 
0.054 0.004 
0.099 0.013 
0.144 0.022 
0.189 0.033 
0.236 0.045 
0.280 0.056 
0.324 0.066 
0.368 0-076 
0.411 0.086 

D, 
- 0.000, 

0~000, 
0.001 
0.003 
0.007 
0.010 
0.0 14 
0.017 
0.021 
0.023 

0 4  

o*ooo, 
0.000, 

- O * O O O ~  
0.000, 

- 0.001 

0.001 
0.002 
0.003 
0-004 
0.004 

TABLE 3. The constants A*, D, and D as defined in (4.15) 

D 
1.038 
2.027 
3.035 
4.030 
5.027 
6.025 
7.012 
8.001 
8.987 
9.965 

In  the expressions (4.13) and (4.14) the constants A*(c),  D,(e), yh(c) and D(a)  
are defined as 

i A* = 1~404A-~, Dh = 4(3) ( - 4) ! ( - t ) !  al.A,/n(Tl - T,) (h - Q)! ( - h - *)! ?/h, 

7, = - (1 + 2h) (1 + 3h)/a, 
4 

h=O 
D = 0*120A* + D,, 

(4.15) 

where A is the solution of (4.7). The quantities A*, D, (h = 0, 1,2,3,4) and D 
are given for c = l(1) 10 in table 3. We may also note that in this case A(r),  from 
its definition in 0 3 and equations (4.8), (4.10) may be written as 

A = 5.319 rs/aiR + 0.926. 

As an illustration of the above results the Nusselt number is displayed, for 
three specific values of c, in figure 3 showing the effectiveness of this type of 
flow for cooling purposes. 

The approximate method described here is inferior to that of Watson's, 
described in 3 2,  since the assumed quartic profile (4.3) does not join on smoothly 
with the similarity solution at r = r,. However, as indicated earlier, the transi- 
tion region (iii) in which the velocity profile attains its final similarity form will 
be small and it is sufficient for our purposes, especially in view of the enormous 
simplifications in the analysis, to assume the quartic profiles (4.3) and (4.4). 
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. -.- 
0243 

rl(allR)) 

FIGURE 3. The Nusselt number, for c = 1, 3 and 10, from (4.13) and (4.14) 
using the results in table 3. 

The thin layer of fluid in which we have been investigating the temperature 
distribution is terminated by a sudden increase in depth at a station r = r2, say. 
This is a hydraulic jump and an estimate of rp has been made by Watson (1964). 
Watson also extends his analysis to the case of turbulent flow which is outside 
the scope of the present work. 

The author is indebted to Dr N. Riley for suggesting this problem. 
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